Complementary learning systems within the hippocampus: a neural network modelling approach to reconciling episodic memory with statistical learning.

نویسندگان

  • Anna C Schapiro
  • Nicholas B Turk-Browne
  • Matthew M Botvinick
  • Kenneth A Norman
چکیده

A growing literature suggests that the hippocampus is critical for the rapid extraction of regularities from the environment. Although this fits with the known role of the hippocampus in rapid learning, it seems at odds with the idea that the hippocampus specializes in memorizing individual episodes. In particular, the Complementary Learning Systems theory argues that there is a computational trade-off between learning the specifics of individual experiences and regularities that hold across those experiences. We asked whether it is possible for the hippocampus to handle both statistical learning and memorization of individual episodes. We exposed a neural network model that instantiates known properties of hippocampal projections and subfields to sequences of items with temporal regularities. We found that the monosynaptic pathway-the pathway connecting entorhinal cortex directly to region CA1-was able to support statistical learning, while the trisynaptic pathway-connecting entorhinal cortex to CA1 through dentate gyrus and CA3-learned individual episodes, with apparent representations of regularities resulting from associative reactivation through recurrence. Thus, in paradigms involving rapid learning, the computational trade-off between learning episodes and regularities may be handled by separate anatomical pathways within the hippocampus itself.This article is part of the themed issue 'New frontiers for statistical learning in the cognitive sciences'.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complementary learning systems within the hippocampus: A neural network modeling approach to reconciling episodic memory with statistical learning

A growing literature suggests that the hippocampus is critical for the rapid extraction of regularities from the environment. Although this fits with the known role of the hippocampus in rapid learning, it seems at odds with the idea that the hippocampus specializes in memorizing individual episodes. In particular, the Complementary Learning Systems theory argues that there is a computational t...

متن کامل

Complementary learning systems in the brain. A connectionist approach to explicit and implicit cognition and memory.

Freud's ideas about the role of non-conscious processes relates to contemporary thinking about explicit and implicit memory, and his early efforts to understand cognition and behavior in terms of neural mechanisms share several themes in common with contemporary connectionist models. The present paper presents a connectionist perspective of the neural basis of learning and memory and their orga...

متن کامل

Learning Curve Consideration in Makespan Computation Using Artificial Neural Network Approach

This paper presents an alternative method using artificial neural network (ANN) to develop a scheduling scheme which is used to determine the makespan or cycle time of a group of jobs going through a series of stages or workstations. The common conventional method uses mathematical programming techniques and presented in Gantt charts forms. The contribution of this paper is in three fold. First...

متن کامل

Iterative learning identification and control for dynamic systems described by NARMAX model

A new iterative learning controller is proposed for a general unknown discrete time-varying nonlinear non-affine system represented by NARMAX (Nonlinear Autoregressive Moving Average with eXogenous inputs) model. The proposed controller is composed of an iterative learning neural identifier and an iterative learning controller. Iterative learning control and iterative learning identification ar...

متن کامل

Semi-Supervised Learning Based Prediction of Musculoskeletal Disorder Risk

This study explores a semi-supervised classification approach using random forest as a base classifier to classify the low-back disorders (LBDs) risk associated with the industrial jobs. Semi-supervised classification approach uses unlabeled data together with the small number of labelled data to create a better classifier. The results obtained by the proposed approach are compared with those o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Philosophical transactions of the Royal Society of London. Series B, Biological sciences

دوره 372 1711  شماره 

صفحات  -

تاریخ انتشار 2017